Dedifferentiated chondrosarcoma of bone

An immunohistochemical and lectin-histochemical study

Mark R. Wick^{1*}, Gene P, Siegal^{3**}, Stacey E. Mills^{4***}, Roby C. Thompson², Deepak Sawhney^{3****}, and Robert E. Fechner⁴

Summary. Ten cases of dedifferentiated chondrosarcoma (DCS) were immunohistochemically and histochemically compared with 12 de novo malignant fibrous histiocytomas, 10 osteoblastic osteosarcomas, 9 conventional chondrosarcomas, and 4 fibrosarcomas (all of bone or soft tissues), in order to discern similarities and differences in the immunophenotypes of these neoplasms. All cases of DCS and malignant fibrous histiocytoma were reactive for alpha-1-antichymotrypsin, and several examples of both tumor types bound peanut agglutinin, and expressed positivity for alpha-1-antitrypsin and lysozyme. None of these four cellular markers was observed in de novo osteosarcoma and fibrosarcoma; in addition, conventional chondrosarcoma lacked all of them except for peanut agglutinin receptors. S100 protein reactivity and binding of wheat germ agglutinin were detectable in conventional chondrosarcomas and in rare cells of the anaplastic components of primary DCS, but not in malignant fibrous histiocytoma arising ab initio and the other sarcomas. These results suggest the evolution of a second neoplastic cellular clone

mer Assistantship Program (Cancer Education Program;

CA 17973), funded by the National Cancer Institute, National

Institutes of Health

in DCS, with primitive morphological and phenotypic characteristics.

Key words: Chondrosarcoma – Sarcomas of bone – Immunohistochemistry – "Histiocytic" markers

The concept that chondrosarcoma may alter its microscopic appearance, and assume the characteristics of an anaplastic neoplasm without overt chondrogenesis, is now well-accepted (Astorino and Tesluk 1985; Braddock and Hadlow 1966; Brooks 1986; Campanacci et al. 1979; Dahlin 1978; Dahlin and Beabout 1971; Eyre-Brook and Price 1969; Johnson et al. 1986; Kahn 1976; McCarthy and Dorfman 1982; McFarland et al. 1977; Mirra and Marcone 1974; Rockwell and Enneking 1971; Sanerkin and Woods 1979). This phenomenon has been termed "dedifferentiation". (Dahlin and Beabout 1971) and is thought to occur in approximately 10% of all chondrosarcomas. Tumors that reach a large size, or repeatedly recur, seem to be particularly prone to display dedifferentiated foci (Dahlin 1978). Although the process in question is not actually "de-"differentiation, but rather an arrest in the maturation of neoplastic cells, the modifier "dedifferentiated" is widelyused in the literature on chondrosarcoma, and will be retained in the ensuing discussion for that reason.

Various reports on dedifferentiated chondrosarcoma (DCS) have classified its high-grade histologic component as osteosarcoma, fibrosarcoma, or malignant fibrous histiocytoma (Braddock and Hadlow 1966; Dahlin 1978; Dahlin and Beabout 1971; Eyre-Brook and Price 1969; Johnson et al. 1986; McCarthy and Dorfman 1982; McFarland et al. 1977; Mirra and Marcone 1974; Rockwell

Departments of Laboratory Medicine and Pathology and, ² Orthopedic Surgery, University of Minnesota, School of Medicine, Minneapolis, USA

³ Departments of Pathology, University of North Carolina at Chapel Hill, USA

⁴ University of Virginia, Virginia, USA

^{*} M.R. Wick is a recipient of a Career Development Award from the American Cancer Society, under whose sponsorship this work was performed. ** G.P. Siegal is the recipient of a Junior Faculty Clinical Fellowship (JFCF 739) from the American Cancer Society, and a University of North Carolina Junior Faculty Development Award. Dr. Siegal was supported in part by a grant from the Gaston County Cancer Society, and is a Jefferson-Pilot fellow in Academic Medicine. *** S.E. Mills is a Junior Clinical Faculty member of the American Cancer Society. **** D. Sawhney was supported by the Sum-

Offpring requests to: M.R. Wick, Box 76 Mayo Memorial Bldg., University of Minnesota Hospitals, 420 Delaware Street, S.E., Minneapolis, MN 55455, USA

and Enneking 1971; Sanerkin and Woods 1979). In an attempt to discern whether this element is indeed heterogeneous in its differentiation products, we have studied ten examples of DCS immunohistochemically, using a panel of antibodies directed against epithelial and mesenchymal antigens. The immunophenotype of these cases was compared with those of twelve malignant fibrous histiocytomas, ten osteosarcomas, and four fibrosarcomas of bone and soft tissues.

Materials and methods

The surgical pathology files of the University of Minnesota and the University of Virginia were searched for examples of dedifferentiated chondrosarcoma. Clinical records, microscopic slides, and radiographs were reviewed, in all cases that were retrieved. For comparison, ten cases of conventional osteosarcoma and nine of Broders' grade 2 to 3 chondrosarcoma were also studied, along with two malignant fibrous histiocytomas (MFH) of bone, ten MFH of soft tissues, one fibrosarcoma of bone, and three fibrosarcomas of soft tissues. The latter group of neoplasms was randomly chosen from available examples in the institutional files of one of the authors (MRW).

Microscopic sections were cut at 5 microns from formalinfixed, paraffin-embedded tumor tissue in each case, and were stained with hematoxylin and eosin. In addition, immunohistochemical analyses were performed for eight antigens with the PAP or ABC methods, as previously described (Hsu et al. 1981; Sternberger et al. 1970). These antigenic determinants were chosen to reflect the characteristics of epithelial and mesenchymal cell lines, and are listed in Table 1. In addition, the binding of three lectin preparations (peanut, wheat germ, and concanavalin-A agglutinins) was assessed in all cases, using biotinylated reagents (Vector Laboratories, Inc., Burlingame, CA, USA) and the ABC method. In order to determine the possible effect of differing technical procedures on immunohistochemical results, selected immunostains (for S100 protein and alpha-1-antichymotrypsin) were performed in the laboratories of two of the authors (MRW and GPS).

All immunohistochemical analyses were done in a phosphate-buffered saline system (pH 7.4), without prior digestion of tissue sections by proteolytic enzymes. Negative controls were represented by sections of each neoplasm stained by substitution of nonimmune rabbit serum or mouse ascites fluid for primary antibodies. Positive controls consisted of stock tumors or tissues known to contain the determinants of interest.

Results

Clinical features

Among the ten patients with DCS included in this study, seven were men and three were women, ranging in age from 37 years to 85 years at diagnosis. Nine complained of pain in the affected bones, while one case presented with a nonpainful mass. Three tumors involved the ilium, three occurred in the humerus, and one each arose in the scapula, femur, tibia, and radius. All were clearly malignant radiographically, and were represented by large, lytic, focally calcified masses which expanded the bone and breached its cortex (Fig. 1). Pathologic fracture was present in two cases. The therapies employed, and clinical outcomes of cases of DCS

Table 1. Immunohistochemical and histochemical reagents used in the study of dedifferentiated chondrosarcoma and other sarcomas of bone and soft tissue

Antibody/Lectin	Source	Working dilution	
Polyclonal anti-S100	DakoPatts Co., Inc.		
Monoclonal anti-S100 ^a	Dr. G.Y. Gillespie University of North Carolina-Chapel Hill	1:20	
Anti-lysozyme	DakoPatts Co., Inc.	1:700	
Anti-alpha-1-antitrypsin	DakoPatts Co., Inc.	1:800	
Anti-alpha-1-antichymotrypsin	DakoPatts Co., Inc.	1:800	
Anti-vimentin (Clone PK-V) ^a	Lab Systems, Inc.	1:40	
Anti-cytokeratins: Clones AE1/AE3 ^a Clone PKK1 ^a Clone EAB 902 ^a	Hybritech Labs, Inc. Lab Systems, Inc. Enzo Biochem, Inc.	1:160 1:200 1:6400	
Anti-epithelial membrane antigena	DakoPatts Co., Inc.	1:160	
Anti-desmin	DakoPatts Co., Inc.	1:200	
Biotinylated peanut agglutinin	Vector Laboratories, Inc.	1:1600	
Biotinylated wheat germ agglutinin	Vector Laboratories, Inc.	1:3600	
Biotinylated concanavalin-A agglutinin	Vector Laboratories, Inc.	1:800	

^a Murine hybridoma antibodies

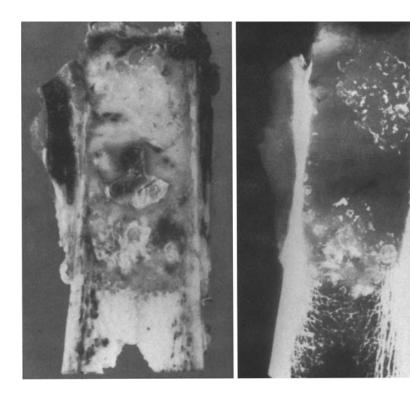


Fig. 1. Gross specimen and specimen radiograph of dedifferentiated chondrosarcoma. The tumor expands the affected bone and breaches its cortex

are summarized in Table 2. The other osseous and soft tissue sarcomas presented as masses, with or without pain.

Microscopic findings

Nine cases of DCS showed the concomitant presence of typical chondrosarcoma and high-grade, noncartilaginous sarcoma in the same tissue specimen (Fig. 2). One neoplasm consisted only of anaplastic sarcoma, but occurred at the margin of a grade 2 myxoid chondrosarcoma, resected one year earlier. In nine cases, the high-grade sarcoma was composed of densely-packed, spindled, fibroblast-like cells, large uninucleated polygonal cells, and multinucleated tumor cells (Fig. 3). In one instance, it consisted only of spindled cells in a "storiform" arrangement. All three neoplastic cell

Table 2. Clinical features of ten cases of dedifferentiated chondrosarcoma

Case	Age/sex Presenting complaints		Type of surgery	Adjuvant therapy/type	Clinical outcome		
1	51/M	Painful mass left acetabulum	En bloc resection ^a	ChemoRx: ADR + DTIC	DOD:1 yr		
2	59/M	Pain and pathologic fracture: right femur	En bloc resection	ChemoRx: ADR + DTIC	Metastases to lungs: AWD:25 months		
3	40/F	Painful mass right ilium	En bloc resection	None	DOD:1 yr		
4	37/F	Painful mass right tibia	Above-knee amputation	ChemoRx: ADR + DTIC	NED:21 months		
5	85/M	Mass right radius	Below-elbow amputation	None	DOD:9 months		
6	40/F	Painful mass right acetabulum	En bloc resection	ChemoRx: ADR + DTIC	DOD:17 months		
7	84/M	Pain and pathologic fracture: left humerus	Biopsy only	None	DOD:4 months		
8	74/M	Painful mass left humerus	En bloc resection	None	DOD:5 months		
9	62/M	Painful mass right thigh	Hip disarticulation	None	DUC:4 months		
10	54/M	Painful mass right scapula	Forequarter amputation	ChemoRx: ADR + DTIC	Metastases to lungs: AWD: 6 months		

^a Original tumor was grade 2 myxoid chondrosarcoma; recurrence was "pure" dedifferentiated chondrosarcoma: death 1 year after recurrence, 2 years after initial presentation

ChemoRx = Chemotherapy; ADR = Adriamycin; DTIC = Dithio-imidazole carboximide; DOD = Dead of disease; AWD = Alive with disease; NED = No evidence of disease; DUC = Dead of unknown causes



Fig. 2. a Overview of dedifferentiated chondrosarcoma. High-grade sarcoma is abruptly apposed to a well-differentiated chondrogenic component (H and E, ×70); b Low-grade chondrosarcoma, characterized by nuclear hyperchromasia and binucleation, is juxtaposed to a high-grade pleomorphic component in this dedifferentiated chondrosarcoma (H and E, ×140).

types displayed high nuclear-to-cytoplasmic ratios, coarse nuclear chromatin, prominent nucleoli, and numerous mitotic figures. There was marked variation in cellular size and shape in all but the purely spindle-cell tumor. Osteogenesis was questionably present in three of the 10 cases, and one neoplasm formed aneurysmal bone cyst-like blood "lakes" in its dedifferentiated component. The overtly chondrogenic portions contained binucleate chondrocytes in a lacunar background, with nuclear hyperchromasia and enlargement (Fig. 2). Overall cellular atypia in this component was slight to moderate, consistent with Broders' grades of 1 or 2.

The histologic appearances of the conventional chondrosarcomas, malignant fibrous histiocytomas, osteosarcomas, and fibrosarcomas in the comparative study group were as standardly described (Dahlin 1978; Meister et al. 1980). All osteosarcomas were of the osteoblastic type (Dahlin 1978), without areas resembling MFH.

Immunohistochemical findings

All tumors studied, including the ten cases of DCS, displayed immunoreactivity for vimentin, and lacked cytokeratin and epithelial membrane antigen. Vimentin was the only detectable antigen in

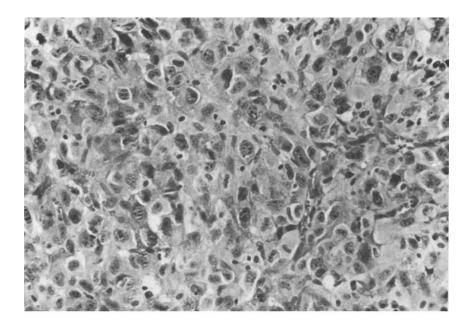
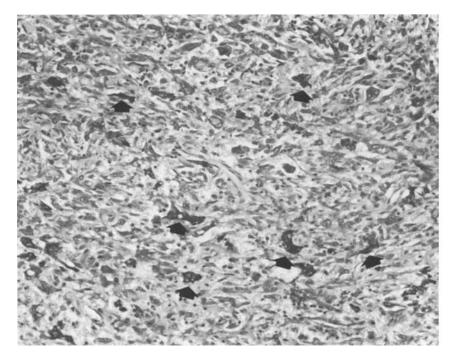



Fig. 3. Anaplastic portion of dedifferentiated chondrosarcoma. A mixture of polygonal and spindle cells in apparent (H and E, ×175)

Fig. 4. Scattered immunoreactivity for alpha-1-antichymotrypsin in anaplastic portion of dedifferentiated chondrosarcoma (*arrows*) (PAP stain, ×95)

cases of fibrosarcoma and osteosarcoma of bone and soft tissues.

All examples of DCS and MFH exhibited positivity for alpha-1-antichymotrypsin, which was present in spindled, polygonal uninucleated, and multinucleated tumor cells. However, the last two of these cell types contained the strongest and most uniform reactivity (Fig. 4). Eight of 12 malignant fibrous histiocytomas and 8 of 10 dedifferentiated chondrosarcomas contained alpha-1-antitrypsin, with a similar cellular distribution to that of alpha-

1-antichymotrypsin (Fig. 5). Lysozyme was observed in occasional tumor cells of three DCS and four MFH. This reactant was invariably seen only in uninucleated polygonal cells. Desmin was expressed by rare spindled cells with atypical nuclei, in 5 DCS and 6 MFH. Conventional chondrosarcomas were nonreactive for all of these antigens.

S 100 protein-positivity was present in the lowgrade chondrosarcomatous component of all nine DCS containing this element. Rare cells of the dedifferentiated elements stained with a polyclonal

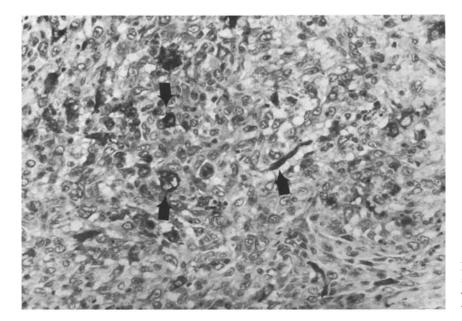


Fig. 5. Positivity for alpha-1antitrypsin (*arrows*) in anaplastic component of dedifferentiated chondrosarcoma (PAP stain, ×175)

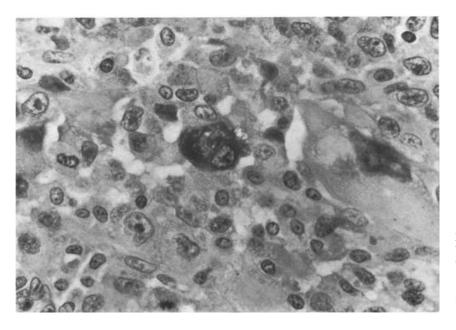


Fig. 6. Two isolated S100 protein-positive tumor cells, in high-grade portion of dedifferentiated chondrosarcoma. One cell manifests only nuclear reactivity (right), while the other contains cytoplasmic staining as well (center) (PAP stain, ×280)

rabbit antiserum to this determinant in 9 of 10 cases (Fig. 6). High-grade metastatic deposits of 2 DCS (both with \$100-reactive primary lesions) were \$100-negative. In contrast, only four of seven cases displayed immunoreactivity with a murine monoclonal antibody to \$100, in high-grade areas. In these examples, fewer positive cells were seen than in the stains done with rabbit antiserum. The latter labelled spindled, polygonal, and multinucleated cells in the 9 positive cases, whereas monoclonal anti-\$100 was reactive with polygonal cells only. All cases of conventional chondrosarcoma contained \$100 protein, but none of the cases of

osteosarcoma, fibrosarcoma, or de novo MFH expressed this determinant.

Histochemical stains demonstrated cell membrane binding of concanavalin-A agglutinin in all conventional chondrosarcomas and the low-grade components of DCS cases, and in 8 dedifferentiated foci of the latter. Eight of 12 examples of MFH, 6 of 10 osteosarcomas, and 3 of 4 fibrosarcomas showed similar binding patterns with this lectin. Wheat germ agglutinin labelled conventional chondrosarcomas, and the low-grade, as well as the anaplastic portions of primary DCS, with a characteristic, punctate, perinuclear cytoplasmic

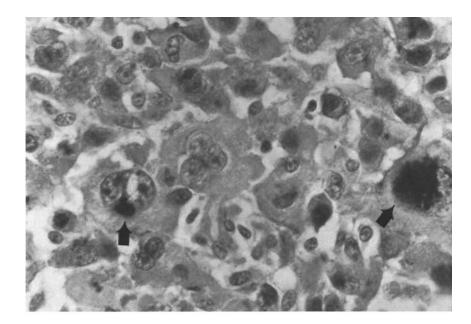


Fig. 7. Punctate perinuclear binding of wheat germ agglutinin (arrows) in dedifferentiated chondrosarcoma (ABC stain, ×280)

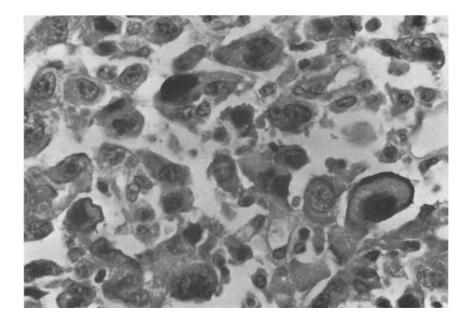


Fig. 8. Mixed cell-membranous and cytoplasmic reactivity for peanut agglutinin, in dedifferentiated chondrosarcoma (ABC stain, ×280)

pattern (Fig. 7). It did not bind to metastatic DCS cells in two cases, or to any of the other noncartilaginous neoplasms studied. Lastly, peanut agglutinin bound to polygonal and multinucleated tumor cells in the anaplastic foci of 6 DCS, and 7 of 12 MFH (Fig. 8). Labelling of the cell membranes and a discrete perinuclear cytoplasmic zone was seen with this reagent. All cases of grade 2 to 3 chondrosarcoma also bound peanut agglutinin in a purely membranous pattern, but examples of osteosarcoma and fibrosarcoma were negative.

Positive and negative control sections stained

appropriately, and there were no interlaboratory differences in immunostaining results, using comparable antibodies. The immunohistochemical findings in the anaplastic components of DCS cases are summarized in Table 3.

Discussion

In light of the extremely aggressive clinical behavior of chondrosarcoma with dedifferentiation (Dahlin 1978; Dahlin and Beabout 1971; McCarthy and Dorfman 1982), it is essential that pathologists involved in the diagnosis of bone tu-

Case	PS 100	MS 100	LYSO	AAT	AACT	VIM	CKER	DES	EM A	PNA	WGA	CON-A
1	+	R+	+	+	+	+	0	R+	0	+	+	+
2	$R + /0^{a}$	0/ND	R + /0	+/+	+/+	+/+	0/0	+/R+	0/0	0/0	+/0	+/+
3	R +	$\mathbf{R} +$	$\mathbf{R} + \mathbf{r}$	R +	+	+	0	0	0	+	+	+
4	R +	R+	0	0	+	+	0	R+	0	+	+	0
5	R +	0	0	+	+	+	0	R+	0	0	0	0
6	R+	0	0	+	+	+	0	0	0	0	+	+
7	R +	R +	0	+	+	+	0	0	0	\mathbf{R} +	0	+
8	R + /0	ND/ND	0/0	+/0	+/+	+/+	0	0	0	+/+	+/0	+/0
9	R +	ND	0	0	+	+	0	0	0	+	+	+
10	+	ND	0	+	+	+	0	R +	0	0	+	+

Table 3. Immunohistochemical and histochemical findings in ten cases of dedifferentiated chondrosarcoma

mors be aware of the attributes of this neoplasm. Companacci et al. (1979), McCarthy and Dorfman (1982), and Johnson et al. (1986) have summarized the clinicopathologic and radiographic features of DCS, including its high rate of fatality within one year after diagnosis. Our series recapitulates the observations of these authors, as well as others (Dahlin 1978; Dahlin and Beabout 1971; McFarland et al. 1977; Mirra and Marcone 1974), with respect to the histopathology and biology of this tumor.

As mentioned previously, several examples of DCS have been described as "osteosarcomatous" or "fibrosarcomatous" transformations of low-grade chondrogenic neoplasms (Braddock and Hadlow 1966; Dahlin 1978; Dahlin and Beabout 1971; Eyre-Brook and Price 1969; McFarland et al. 1977; Mirra and Marcone 1974; Rockwell and Enneking 1971; Sanerkin and Woods 1979). A retrospective examination of the illustrations in these reports suggests to us that most express morphologic patterns like those of MFH, a conclusion also reached by other investigators (McCarthy and Dorfman 1982). Our own case material further supports this opinion.

It has become evident that a malignant fibrous histiocytoma-like morphologic appearance represents the "final common pathway" of other osseous and soft tissue tumors undergoing anaplastic transformation. Well-differentiated liposarcoma, synovial sarcoma, leiomyosarcoma, and chordoma are all capable of exhibiting such dedifferentiation (Brooks 1986; Hashimoto et al. 1986; Volpe and Mazabraud 1983). Recent data presented by Brooks (1986) support the contention that these lesions with divergent microscopic patterns also manifest dissimilar immunophenotypic profiles,

with the expression of antigens associated with "fibrohistiocytic" proliferations. We initiated this study in an attempt to verify these observations immunocytochemically, and to determine whether any antigenic differences could be ascertained between DCS and de novo MFH.

The observed expression of alpha-1-antichymotrypsin, with or without alpha-1-antitrypsin, by the anaplastic components of DCS is in accord with the premise that they display "fibrohistiocytic" differentiation. With the exception of some epithelial neoplasms (Tahara et al. 1984), these enzymatic antigens are expressed by restricted mesenchymal cellular proliferations such as dermatofibrosarcoma protuberans, MFH, giant cell tumor of tendon sheath and nodular tenosynovitis, and malignant histiocytosis (duBoulay 1982; Kindblom et al. 1982; Meister et al. 1980; Meister and Nathrath 1981; Roholl et al. 1985a). The binding of peanut agglutinin by the tumor cells, with a combination of globular cytoplasmic and membranous positivity, has a similar association (Howard and Batsakis 1982; Roholl et al. 1985a). These immunocytochemical and histochemical features were not shared by examples of fibrosarcoma and osteosarcoma included in our study, and the unlikely possibility that the anaplastic components of DCS were epithelial was negated by their failure to react with antibodies to cytokeratin and epithelial membrane antigen (Gown and Vogel 1985; Pinkus and Kurtin 1985). Whether the cells of MFH are, in fact, histogenetically related to monocytes/ histiocytes in a controversial topic (Roholl et al. 1985b; Wood et al. 1986; Strauchen and Dimitriu-Bona 1986).

It is our opinion that tumor-positivity for alpha-1-antitrypsin or alpha-1-antichymotrypsin

^a Results in primary tumor/results in metastases; + = Positive; R + = Rare positive cells; 0 = Negative; ND = Not done; MS100 = Monoclonal anti-S100; PS100 = Polyclonal anti-S100; LYSO = Anti-lysozyme; AAT = Anti-alpha-1-antitrypsin; VIM = Anti-vimentin; CKER = Anti-cytokeratin; DES = Anti-desmin; EMA = Anti-epithelial membrane antigen; PNA = Peanut agglutinin binding; WGA = Wheat germ agglutinin binding; CON-A = Concanavalin-A binding

should not be equated with histiocytic differentiation in the absence of other data; however, our results do indicate that such determinants are of practical use in the diagnosis of fibro-"histiocytic" neoplasms in paraffin sections. Two caveats further pertain to this matter. First, tissue processing has a distinct impact on antibody reactivities, and the observations of this study thus may be dissimilar from others obtained with frozen tissue specimens (Löning et al. 1985; Roholl et al. 1985; Strauchen and Dimitriu-Bona 1986). Secondly, one must be careful to distinguish between the immunohistochemical reactivities of neoplastic and reactive cells, the latter of which may be abundant in some bone and soft tissue sarcomas.

We were able to detect some dissimilarities between the immunostaining profiles of DCS and de novo MFH. Nine of 10 primary examples of the former tumor contained scattered cells that were reactive for S100 protein, as detected by a polyclonal antiserum. Staining results with a monoclonal antibody to this protein (Loeffel et al. 1985) were less universally positive, but 57% of DCS cases did display reactivity in their high-grade components. Regardless of whether the rabbit antibody detected a cross-reacting antigen, or alternately, possessed greater sensitivity for S100 than its monoclonal counterpart, these data were not reproduced in the control group of malignant fibrous histiocytomas that arose ab initio. The affinity of tumor cells for wheat germ agglutinin also differed in these two lesions, in that it was only detected in DCS. The pattern of reactivity with this lectin, that of perinuclear cytoplasmic positivity, has been described in cells of the developing cartilaginous growth plate (Farnum and Wilsman 1984). Hence, the sum of these results suggests that the anaplastic portion of DCS retains some markers seen in cartilage and conventional chondrosarcomas (S 100 and wheat germ agglutinin-reactivity (Farnum and Wilsman 1984; Kahn et al. 1983; Nakamura et al. 1983), while otherwise acquiring the immunohistochemical characteristics of MFH. This may involve the evolution of a second distinct neoplastic cellular clone with more primitive attributes (Brooks

Our results do not, of course, exclude the possibility that still other lines of differentiation may be expressed by DCS. Recent reports have convincingly demonstrated a rhabdomyosarcomatous component in such tumors, both in primary osseous lesions and their metastases (Astorino and Tesluk 1985; Têtu et al. 1986). We observed no microscopic evidence for such a transformation in our material; the desmin-reactivity present in 5 of

our cases was seen in atypical spindle cells that lacked the morphologic features of rhabdomyoblasts. Whether or not these elements instead displayed smooth muscular differentiation is a matter of speculation, since specimens for ultrastructural studies were not available.

In summary, the paraffin-section immunophenotyping data generated in this study support the contention that the anaplastic portion of dedifferentiated chondrosarcoma displays "fibrohistiocytic" characteristics, and differs in this respect from de novo fibrosarcoma, osteosarcoma, and conventional chondrosarcoma. In addition, however, rare anaplastic cells of primary DCS appear to express markers that are shared by cartilaginous cells and tumors, such as \$100 protein and wheat germ agglutinin receptors. These determinants are not found in de novo malignant fibrous histiocytomas.

Acknowledgements. The authors are grateful to Gary Carlson, Nikolas Kostich, and John Uecker, Minneapolis-St. Paul, MN; Henry D. Appelman, Ann Arbor, MI; and Rafael Jufe, Buenos Aires, Argentina, for allowing us to include their cases in this report. We also wish to thank Douglas Simmons, St. Paul, MN, for providing followup information on case 6.

References

Astorino RN, Tesluk H (1985) Dedifferentiated chondrosarcoma with a rhabdomyosarcomatous component. Hum Pathol 16:318–320

Braddock GTF, Hadlow VD (1966) Osteosarcoma in enchondromatosis (Ollier's disease). Report of a case. J Bone Joint Surg 48 B: 145–149

Brooks JJ (1986) The significance of double phenotypic patterns and markers in human sarcomas: a new model of mesenchymal differentiation. Am J Pathol 125:113–123

Campanacci M, Bertoni F, Capanera R (1979) Dedifferentiated chondrosarcomas. Ital J Orthop Traumatol 5:331–341

Dahlin DC (1978) Bone Tumors. General Aspects and Data on 6, 221 Cases. Springfield, IL, CC Thomas; pp 190–217

Dahlin DC, Beabout JW (1971) Dedifferentiation of low-grade chondrosarcomas. Cancer 28:461–466

DuBoulay CEH (1982) Demonstration of alpha-1-antitrypsin and alpha-1-antichymotrypsin in the fibrous histiocytomas using the immunoperoxidase technique. Am J Surg Pathol 6:559–564

Eyre-Brook AL, Price CHG (1969) Fibrosarcoma of bone. Review of fifty consecutive cases from the Bristol Bone Tumor Registry. J Bone Joint Surg 51B:20-37

Farnum CE, Wilsman NJ (1984) Lectin-binding histochemistry of non-decalcified growth plate cartilage: a postembedment method for light microscopy of Epon-embedded tissue. J Histochem Cytochem 32:593-607

Gown AM, Vogel AM (1985) Monoclonal antibodies to human intermediate filament proteins. III. Analysis of tumors. Am J Clin Pathol 84:413-424

Hashimoto H, Daimaru Y, Tsuneyoshi M, Enjoji M (1986) Leiomyosarcoma of the external soft tissues: a clinicopathologic, immunohistochemical, and electron microscopic study. Cancer 57:2077–2088

- Howard DR, Batsakis JG (1982) Peanut agglutinin: a new marker for tissue histiocytes. Am J Clin Pathol 77:407-408
- Hsu S-M, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577-580
- Johnson S, Tetu B, Ayala AG, Chawla SP (1986) Chondrosarcoma with additional mesenchymal component (dedifferentiated chondrosarcoma). I. A clinicopathologic study of 26 cases. Cancer 58:278–286
- Kahn LB (1976) Chondrosarcoma with dedifferentiated foci. A comparative and ultrastructural study. Cancer 37:1365–1375
- Kahn HJ, Marks A, Thom H, Baumal R (1983) Role of antibody to S100 protein in diagnostic pathology. Am J Clin Pathol 79:341–347
- Kindblom L-G, Jacobsen KG, Jacobsen M (1982) Immunohistochemical investigations of tumors of supposed fibroblastic-histiocytic origin. Hum Pathol 13:834–840
- Loeffel SC, Gillespie GY, Mirmiram SA, Miller EW, Golden P, Askin FB, Siegal GP (1985) Cellular immunolocalization of S100 protein within fixed tissue sections by monoclonal antibodies. Arch Pathol Lab Med 109:117–122
- Löning Th, Liebsch J, Delling G (1985) Osteosarcomas and Ewing's sarcomas: comparative immunocytochemical investigation of filamentous proteins and cell membrane determinants. Virchows Arch Pathol Anat Histopathol 407:323–336
- McCarthy EF, Dorfman HD (1982) Chondrosarcoma of bone with dedifferentiation: a study of eighteen cases. Hum Pathol 13:36–40
- McFarland GB, McKinley LM, Reed RJ (1977) Dedifferentiation of low-grade chondrosarcomas. Clin Orthoped 122:157–162
- Meister P, Nathrath W (1981) Immunohistochemical characterization of histiocytic tumors. Diagn Histopathol 4:79–87
- Meister P, Konrad EA, Nathrath W, Elder M (1980) Malignant fibrous histiocytoma: histological patterns and cell types. Pathol Res Pract 168:193–212
- Mirra JM, Marcone RC (1974) Fibrosarcomatous dedifferentiation of primary and secondary chondrosarcoma. J Bone Joint Surg 56A:285–296
- Nakamura Y, Becker LE, Marks A (1983) S100 protein in tumors of cartilage and bone. An immunohistochemical study. Cancer 52:1820-1824

- Pinkus GS, Kurtin PJ (1985) Epithelial membrane antigen a diagnostic discriminant in surgical pathology: immunohistochemical profile in epithelial, mesenchymal, and hematopoietic neoplasms using paraffin sections and monoclonal antibodies. Hum Pathol 16:929–940
- Rockwell MA, Enneking WF (1971) Osteosarcoma developing in solitary enchondroma of the tibia. J Bone Joint Surg 53A:341-344
- Roholl PJM, Kleijne J, Pijpers HW, van Unnik JAM (1985a) Comparative immunohistochemical investigation of markers for malignant histocytes. Hum Pathol 16:763-771
- Roholl PJM, Kleijne J, van Basten CDH, van der Putte SCJ, van Unnik JAM (1985b) A study to analyze the origin of tumor cells in malignant fibrous histiocytomas. A multiparametric characterization. Cancer 56:2809–2815
- Sanerkin NG, Woods CG (1979) Fibrosarcomata and malignant fibrous histiocytomata arising in relation to enchondromata. J Bone Joint Surg 61 B:366-372
- Sternberger LA, Hardy PH Jr, Cuculis JJ, Meyer HG (1970)
 The unlabeled antibody method of immunohistochemistry.
 Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-anti-horseradish peroxidase) and its use in the identification of spirochetes. J Histochem Cytochem 18:315–333
- Strauchen JA, Dimitriu-Bona A (1986) Malignant fibrous histiocytoma: expression of monocyte/macrophage differentiation antigens detected with monoclonal antibodies. Am J Pathol 124:303–309
- Tahara E, Ito H, Taniyama K, Yokozaki H, Hata J (1984) Alpha-1-antitrypsin, alpha-1-antichymotrypsin, and alpha-2-macroglobulin in human gastric carcinomas: a retrospective immunohistochemical study. Hum Pathol 15:957–964
- Têtu B, Ordóñez NG, Ayala AG, Mackay B (1986) Chondrosarcoma with additional mesenchymal component (dedifferentiated chondrosarcoma). II. An immunohistochemical and electron microscopic study. Cancer 58:287–298
- Volpe R, Mazabraud A (1983) A clinicopathologic review of 25 cases of chordoma: a pleomorphic and metastasizing neoplasm. Am J Surg Pathol 7:161–170
- Wood GS, Beckstead JH, Turner RR, Hendrickson MR, Kempson RL, Warnke RA (1986) Malignant fibrous histiocytoma tumor cells resemble fibroblasts. Am J Surg Pathol 10:323-335

Accepted December 18, 1986